Created by S. Bennoun, M. Hin, and T. Holm ©, modified by Yuwen Wang

1. Objectives.

• correctly use the differentiation rules presented in the section (derivative of a constant, power rule, constant multiple rule, sum rule, natural exponential rule, product rule, quotient rule)

2. Derivative rules.

If you did not go over the derivative rules in the pre-class work, write them down here.

Let c and n be real numbers, and u and v be differentiable functions.

- Derivative of a constant function
- Power rule
- Derivative of a constant multiple
- Derivative sum rule
- Derivative of the natural exponential function
- Derivative product rule
- Derivative quotient rule

3. Practice applying rules.

Using the differentiation rules, compute the derivatives of the following functions:

(a)
$$f(x) = 3x^4 - 2x^3 + 2x - 5$$

(b) $f(x) = ax^3 + bx^2 + cx + d$ where a, b, c and d are constants

(c)
$$f(x) = \frac{x-2}{x+2}$$

(d)
$$f(t) = \frac{3t+1}{t^2+t-2}$$

(e)
$$f(x) = 2x^3e^x$$

(f) Suppose u and v are differentiable functions of x and that

$$u(1) = 2, \quad u'(1) = 0, \quad v(1) = 5, \quad v'(1) = -1.$$

Find the values of the following derivatives at x = 1:

(i)
$$\frac{d}{dx}(uv)$$
 (ii) $\frac{d}{dx}\left(\frac{u}{v}\right)$ (iii) $\frac{d}{dx}\left(\frac{v}{u}\right)$ (iv) $\frac{d}{dx}(7v-2u)$.

4. More on quotient rule.

For each pair of functions, find the derivative of the functions by using quotient rule for one function and another method for the other.

(a)
$$f(t) = \frac{t^3 + 5t^2 - 2t}{t}$$
 and $g(t) = \frac{t}{t^3 + 5t^2 - 2t}$

(b)
$$f(x) = \frac{3}{x^4}$$
 and $g(x) = \frac{x^2 + x + 1}{\sqrt{x}}$

(c) Based on the calculation you have done, when is it easier not to use the quotient rule?

5. More on product rule.

The goal of this exercise is to see why $(f(x)g(x))' \neq f'(x)g'(x)$.

(a) A friend of yours claims (contrary to what the textbook says) that the product rule is (f(x)g(x))' = f'(x)g'(x). You want to show him that his claim is wrong. If you compute the derivative of $f(x) = x^2$ using your friend's differentiation rule, what do you get?

(b) The product rule can be summarized pictorially as: